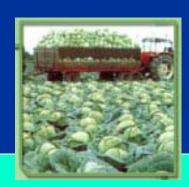

I. Frequências genotípicas

S → resistência ao *Fusarium* em repolho


população de repolho

P: 55 x ss

F1: Ss x Ss

F2: SS Ss ss 25%

SS resistentes
Ss

S -> gene para resistência ao Fusarium em repolho

ss -> susceptivel

Plantação qualquer de repolho onde o fungo esteja presente:

Frequência de plantas resistentes?

Frequência de plantas susceptíveis?

- → Depende da origem das sementes utilizadas na plantação:
- Variedade selecionada = plantas resistentes e homozigotas (SS)
- Sem seleção e altamente susceptível = plantas (ss)
- Valores intermediários 84% resistentes
 16% susceptíveis

População qualquer não é necessariamente = a uma população F2
 variedade, raça, etc
 genótipos em qualquer frequência

Ex.: POPULAÇÃO - FREQUÊNCIAS GENOTÍPICAS

Gado Holandês preto e branco	Milho híbrido simples comercial	Milho opaco	Homem
VV = 100%	RfRf = 0%	O2O2 = 0%	AA = 98,495%
Vv = 0%	Rfrf = 100%	O2o2 = 0%	Aa = 1,5%
vv = 0%	rfrf = 0%	0202 = 100%	aa = 0,0005%
V = pelagem preta	Rf = restaurador de fertilidade	O2 = baixo teor de lisina	A = pigmentação normal
v = pelagem vermelha	rf = esterilidade masculina	o2 = alto teor de lisina	a = albinismo

ESALQ - LGN - Prof. A.A.D. Coelho

 Generalizando, utilizando o exemplo da resistência ao Fusarium em repolho, as frequências genotípicas podem ser tomadas como P, Q e R

Genótipo	Nº de plantas	Frequência
SS	n1	(🖒) = P = <u>n1</u>
		N
Ss	n2	(H) = <mark>Q</mark> = <u>n2</u>
		N
SS	n3	R = <u>n3</u>
		N
Totais	N	1,00

II. Frequências gênicas

Na população de repolho tomada como exemplo:

Plantas Ss gametas 1/2 S 1/2 S

Plantas ss somente gametas s

Portanto, entre todos os gametas formados temos:

Frequência (S) =
$$p = P + \frac{1}{2}Q = (D + \frac{1}{2}H)$$

Frequência (S) = $q = \frac{R + \frac{1}{2}Q = (R + \frac{1}{2}H)}{P + Q + R = 1.0 = (D + H + R = 1.0)}$

p e q → frequências dos alelos S e s (frequências gênicas)

Logo, na nova população as frequências genotípicas serão:

\sim \circ		
+	S (p)	s (q)
S	SS	S <mark>s</mark>
(p)	p ²	pq
S	Ss	SS
(q)	pq	q²

genótipos	frequências na segunda população
SS	(D1) = P1 = p ²
Ss	(H1) = Q1 = 2pq
	R1 = q ²

- III. Equilíbrio de Hardy-Weinberg
- População inicial de repolho:

$$ss \rightarrow R$$

 Segunda população (formada pelo plantio das sementes colhidas da população original):

SS
$$\rightarrow$$
 P1 = p²

$$Ss \rightarrow Q1 = 2pq$$

SS
$$\rightarrow$$
 R1 = q²

Onde:

```
p = frequência do alelo S nos gametas da pop. inicial q = frequência do alelo s nos gametas da pop. inicial
```

O que acontecerá se esse processo for repetido, ou seja, tomando-se sementes da segunda população para formar um terceiro campo de repolhos, quais serão aí as suas frequências genotípicas?

Segunda população:

Frequência (S) = P1 +
$$\frac{1}{2}$$
 Q1 = p 2 + $\frac{1}{2}$ 2pq = p 2 + pq = = p 2 + p (1 - p) = p 2 + p - p 2 = p

Frequência (s) = R1 +
$$\frac{1}{2}$$
 Q1 = q² + $\frac{1}{2}$ 2pq = q² + pq = q² + q (1 - p) = q² + q - q² = q

Logo, na terceira população as frequências genotípicas serão:

\sim \circ		
7	S (p)	s (q)
S	SS	Ss
(p)	p ²	pq
S	Ss	SS
(q)	pq	q ²

genótipos	frequências na terceira população
SS	P2 = p ² (= P1)
Ss	Q2 = 2pq (= Q1)
	$R2 = q^{2}(=R1)$

 Portanto, a terceira população é idêntica à segunda; não houve mudanças nas frequências genotípicas. Se esse processo for continuado, ou seja, sempre colhendo sementes para formar novas populações de descendentes, as frequências dos genótipos permanecerão em p², 2pq e q².

Lei de Hardy-Weinberg

"Se os cruzamentos forem ao acaso (sem autofecundações ou cruzamentos controlados) e se não houver fatores como a seleção, a mutação, etc. que modificam as frequências gênicas, uma população entra em equilíbrio após uma geração de intercruzamentos. Daí para a frente, as populações de descendentes serão sempre iguais na sua estrutura: as frequências dos genótipos (e também dos genes) permanecerão sempre as mesmas.